

Calculus I Name:		
Online Quiz 5	Signature:	
	No Work \Leftrightarrow No Points	
Be N	eat , Organized & Show Detaile	d Work
1. (5 points) Find $f'(x)$ f		
	$3c\chi + \chi^3 \cdot (-6c\chi)$	
	² - χ ³ (sc χ ω	t χ
2. (5 points) Find $f'(x)$ f		
	2) · cot $\chi + (\chi^2 -$	
	$-2) \cot x - (x^2 - \frac{1}{2}) \cot x$	
3. (5 points) Find $\frac{dy}{dx}$ for	$xy = 4.$ $\Im = \frac{4}{\chi}$	y=4x1
$\frac{\Delta \vartheta}{\Delta \chi} = 4$	$(-1)\cdot \bar{\chi}^2 = \begin{bmatrix} -\frac{4}{\sqrt{2}} \\ \chi^2 \end{bmatrix}$	$\frac{dv}{dx} = \frac{-4}{3}$
4. (5 points) Find $\frac{dx}{dy}$ for	$y = \sqrt{x-2}$. $y^2 = \chi$	-2
$\chi = \chi^2 + 2$	-	
$\frac{dx}{dy} = 2y^{4}$	0 = 29	<u>dr</u> =29
Page 1 of 1	Online Quiz 5	Total Points: 20

Introduction to chain Rule:

$$\frac{d}{dx} \left[(f(x))^{n} \right] = n \left(f(x)^{n-1} \cdot \frac{d}{dx} \left[f(x) \right)^{n} \right]$$
Sind $\frac{dy}{dx}$ for $y = (x^{3} - 4x)$
 $\frac{dy}{dx} = 5(x^{3} - 4x)^{5-1} \cdot \frac{d}{dx} \left[x^{3} - 4x \right]$
 $= 5(x^{3} - 4x)^{5-1} \cdot \frac{d}{dx} \left[x^{3} - 4x \right]$
 $= 5(x^{3} - 4x)^{5} \cdot (3x^{2} - 4)$
Sind $f(x)$ for $f(x) = \left(\frac{x-2}{x+1} \right)^{3}$
 $f(x) = 3\left(\frac{x-2}{x+1} \right)^{2} \cdot \frac{d}{dx} \left[\frac{x-2}{x+1} \right]$
 $= 3\left(\frac{x-2}{x+1} \right)^{2} \cdot \frac{1(x+1)-(x-2) \cdot 1}{(x+1)^{2}}$
 $= 3 \cdot \frac{(x-2)^{2}}{(x+1)^{2}} \cdot \frac{x+1-x+2}{(x+1)^{2}} = \frac{9(x-2)^{2}}{(x+1)^{4}}$

Г

Sind
$$y'$$
 for $y = \cos^{3} x$
 $y' = \left[\cos x\right]^{3}$
 $y' = 3\left[\cos x\right]^{3} - \sin x$ $y' = -3\cos^{2} x \sin x$
Sind $\frac{dy}{dx}$ for $y = \sqrt{\sin x + \tan x}$
 $y' = (\sin x + \tan x)^{4/2}$
 $y' = \frac{\cos x + \sec^{2} x}{2(\sin x + \tan x)^{4/2}} = p \quad y' = \frac{\cos x + \sec^{2} x}{2\sqrt{\sin x + \tan x}}$

More general rule for chain rule:

$$\frac{d}{dx} \left[S(0,x) \right] = S(0,x) \cdot S(x)$$
Ex:

$$\frac{d}{dx} \left[S(0,x) \right] = Cos(x) \cdot 2x$$

$$= 2x Cos(x^{2})$$

$$\frac{d}{dx} \left[tan(\sqrt{x}) \right] = Sec^{2}(\sqrt{x}) \cdot \frac{d}{dx} \left[\sqrt{x} \right]$$

$$= Sec^{2}(\sqrt{x}) \cdot \frac{d}{2\sqrt{x}}$$

$$= \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}}$$

Sind S'(x) for
$$S(x) = \left[\frac{3}{2} \left(\cos x^2 \right) \right]^2$$

$$J'(x) = 2 \left(\frac{3}{2} \left(\cos x^2 \right) \right) \cdot \frac{3}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \right) \cdot \frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \right) \cdot \frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \right)^2 \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \right)^2 \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \right)^2 \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{3}{2} \left(\cos x^2 \right) \cdot \frac{1}{2} \left(\cos x^2 \right) \right) \cdot \frac{1}{2} \left(\cos x^2 \right) \cdot \frac{1}{2}$$

Sind
$$S'(x)$$
 F_{0v} $f(x) = \left(\frac{\sin x^{2} + \cos x^{2}}{x^{2}}\right)^{2}$
 $S'(x) = 2\left(\frac{\sin x^{2} + \cos x^{2}}{x^{2}}\right)^{2}$ $\left(\frac{\cos x^{2} \cdot 2x - \sin x^{2} \cdot 2x}{x^{2}}\right)^{2}$
 $\int (x) = 2\left(\frac{\sin x^{2} + \cos x^{2}}{x^{2}}\right)^{2}$ $\left(\frac{\cos x^{2} \cdot 5x^{2}}{x^{2}}\right)^{2} \cdot 2x$
 $\left(\frac{x^{2}}{x^{2}}\right)^{2}$
 $\int (x) = 2 \cdot \frac{\sin x^{2} + (\cos x^{2})}{x^{2}} \cdot \frac{2x^{2}}{x^{2}}\left(\frac{\cos x^{2} - \sin x^{2}}{x^{2}}\right)^{2} \cdot \frac{2x(\sin x^{2} + \cos x^{2})}{x^{4}}$
 $= \frac{2(\sin x^{2} + \cos x^{2})}{x^{2}} \cdot \frac{2x^{2}(\cos x^{2} - \sin x^{2}) - (\sin x^{2} + \cos x^{2})}{x^{4}}$
 $= \frac{4(\sin x^{2} + \cos x^{2})[x^{2}(\cos x^{2} - \sin x^{2}) - (\sin x^{2} + \cos x^{2})]}{x^{5}}$

Sind
$$\frac{dw}{dx}$$
 for $y = \sec^2 x^3 - \tan^2 x^3$
 $y' = 2 \sec x^3 \cdot \sec x^3 \tan x^3 \cdot 3x^2$ $y=1$
 $-2 \tan x^3 \cdot \sec^2 x^3 \cdot 3x^2$ $y=0$
 $= 6x^2 \sec^2 x^3 \tan x^3 - 6x^2 \sec^2 x^3 \tan x^3$
 $= 0$
Sin²x + Cos²x = 1
Divide by Cos²x
 $\frac{5in^2x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$
 $\tan^2 x + 1 = \sec^2 x$
 $1 = \sec^2 x - \tan^2 x$

Sind eqn of the tan, line to the curve
of
$$y=\sqrt{1+x^3}$$
 at the Point with $x=2$.
 $Tm=y'|_{(2,3)}$
 $y=(1+x^3)^{l/2}$ $y'=\frac{1}{2}(1+x^3)^{-\frac{1}{2}}\cdot 3x^2$
 $y=\frac{3x^2}{2\sqrt{1+x^3}}$
 $m=y'|_{(2,3)}=\frac{3\cdot 2^2}{2\sqrt{1+x^3}}=\frac{3\cdot 4}{2\cdot 3}=2$
 $y=\frac{3\cdot 2}{2\sqrt{1+x^3}}=\frac{3\cdot 4}{2\cdot 3}=2$
 $y-y_1=m(x-x_1)$ $y=3=2(x-2)$
 $(y=2x-1)$

$$r(x) = \int_{x} (\Im_{x} (h(x)))$$

$$h(x) = 2, \ \Im_{x} (a) = 3$$

$$h'(x) = \int_{x} (\Im_{x} (a) + (x)) \cdot \Im_{x} (a) = 6$$

$$\int_{x} (x) = \int_{x} (\Im_{x} (h(x))) \cdot \Im_{x} (h(x)) \cdot h'(x)$$

$$r'(x) = \int_{x} (\Im_{x} (h(x))) \cdot \Im_{x} (h(x)) \cdot h'(x)$$

$$= \int_{x} (\Im_{x} (a) + \Im_{x} (a)$$

Sind
$$x - \text{Value}$$
 where $y = \sin 2x - 2\sin x$
has horizontal tan, line on $[0, 2\pi]$
 $m = 0$
 $y = 0$
 $y = \cos 2x \cdot 2 - 2 \cdot \cos x$
 $y = 2 [\cos 2x - 2 \cdot \cos x]$
Solve $y' = 0$
 $(\cos 2x - \cos x = 0)$
 $2 \cos^2 x - 1 - \cos x = 0$
 $2 \cos^2 x - 1 - \cos x = 0$
 $2 \cos^2 x - \cos x - 1 = 0$
 $(a \cos x + 1) (\cos x - 1) = 0$
 d
 $\cos x = \frac{1}{2}$ $\cos x = 1$
Make Sure to Solve for x in $[0, 2\pi]$